If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2+4x-12=0
a = 81; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·81·(-12)
Δ = 3904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3904}=\sqrt{64*61}=\sqrt{64}*\sqrt{61}=8\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{61}}{2*81}=\frac{-4-8\sqrt{61}}{162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{61}}{2*81}=\frac{-4+8\sqrt{61}}{162} $
| 4=n*32 | | 34/6=170/x | | N=32x4 | | 2q−9=q | | .50d-12=24 | | 3x−4)−(x−7)=−6(x+1)+7x | | 4y−7=2y+9 | | X-7=3x+(-5) | | Y=-325+14x | | -11r-2=-24+ | | 8k=10k−10 | | 10+10v=8v | | 112=6x+x^2 | | 4x+20=x–15 | | y2=-81 | | 5^(-3n-1)=625 | | 2x^2−x=−8x+4 | | 2x2−x=−8x+4 | | 15x(13x-10)=x-14 | | 5^-3n-1=625 | | 7x=576 | | x(x+6)=7(7+9) | | 4(y+(-3))=28 | | -8(2x-1)=56 | | 4x+16=6+8 | | 5-2x-5=19 | | 2x^2=8x+12=0 | | 5=-6x+5 | | 4(x/9x-1)=16 | | 3(x+4)=21 | | 1250=25x | | 1250=275x |